# Data Science for Social Welfare

Jimmy Hickey Winona State University Pi Mu Epsilon April 13<sup>th</sup> 2018



# Data Science: More than a Buzzword

- Gathering
- Managing
- Analyzing
- Communicating





## Examples!





# **IPUMS**





## Gathering

- Structured vs. Unstructured
- <u>https://data.seattle.gov/Public-Safety/Seattle-</u> <u>Police-Department-911-Incident-Response/3k2p-</u> <u>39jp</u>
- <u>https://usa.ipums.org/usa-action/variables/group</u>
- <u>https://www.thecurrent.org/playlist/2014-01-01/01</u>

## Managing

- Cleaning
- Aggregating Data
- Feature Engineering & Dimension Reduction

# Cleaning

### Data Management

- The data set contained many missing values.
  - Imputed if possible
    - Infer the missing value to be zero by context or extrapolate it from other data
  - Set to "Unknown"
    - Such as in categorical survey data
  - Left missing
    - If filling it in would be misleading or unfounded
- Used models resistant to missing data

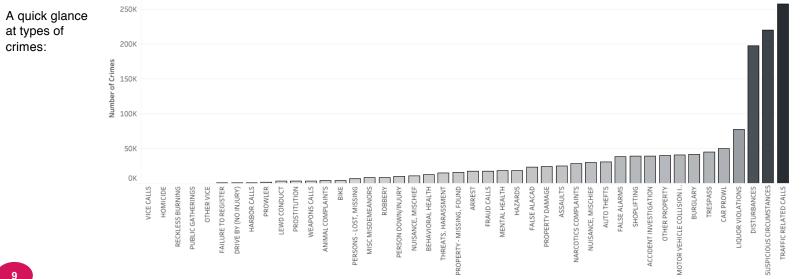
# Pre-Aggregation

### About the Data



We used data from the Seattle Police Department. We had a variety of variables to work with including the location of calls and the type of crime each reported.

Number of Different Crimes



# Post-Aggregation

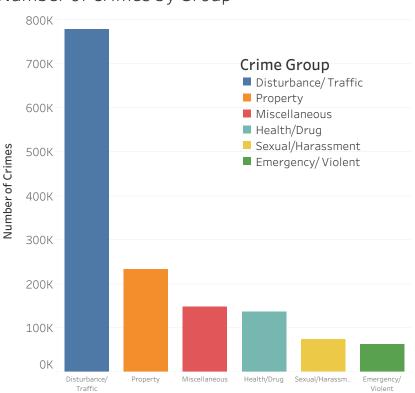
#### Our first inclination was to distill the crimes into smaller, more meaningful categories than was provided in the data set.

These categories are:

**Our Approach** 

- Disturbance/Traffic
- Property
- Miscellaneous
- Health/Drug
- Sexual/Harassment
- Emergency/Violent

#### Number of Crimes by Group



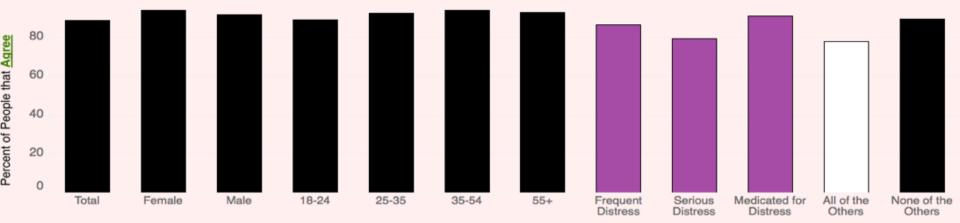


## Analyzing

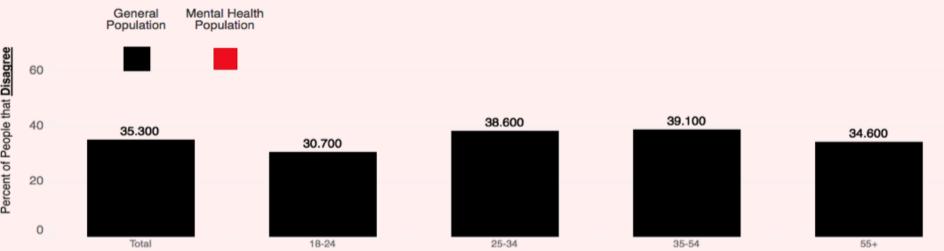
- Visualization
- Modeling
- Both!

# Visualizing

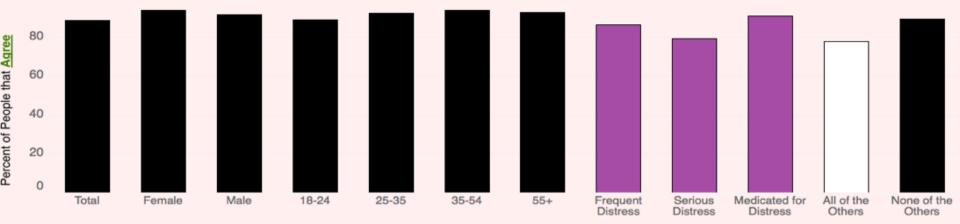
#### "Treatment can help persons with mental illness lead normal lives."



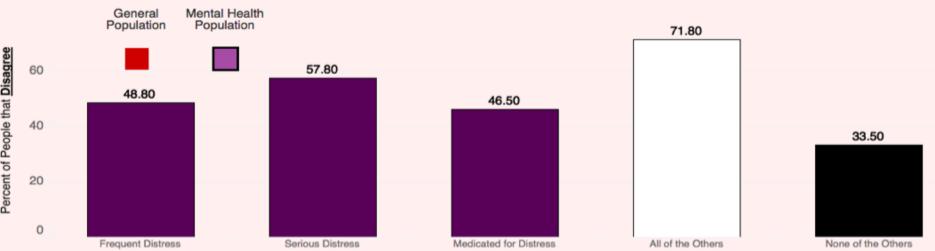
"People are generally caring and sympathetic to persons with mental illness."



#### "Treatment can help persons with mental illness lead normal lives."



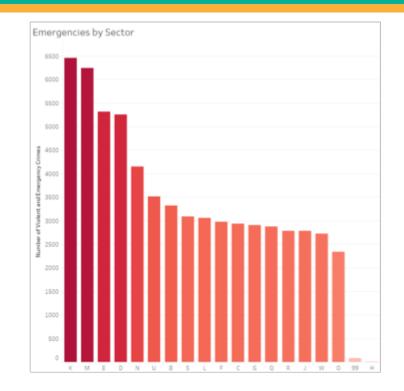
#### "People are generally caring and sympathetic to persons with mental illness."



### **Emergency Calls**





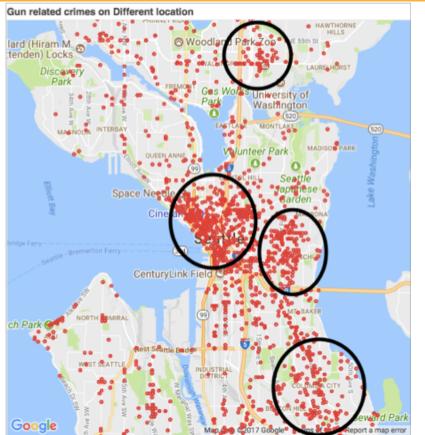


- Similar time patterns hold for emergencies. •
- Emergencies are more prevalent in certain sectors.

Hou

### **Geospatial Visualization**





Gun related crimes tend to be concentrated in certain areas.

There are four distinct clusters.

- Columbia City
- Downtown
- Squire Park
- University District

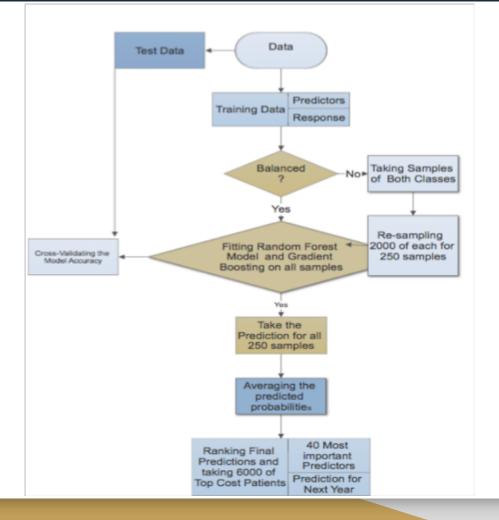
# Modeling

### FlowChart of algorithm used for the modeling.

Repeated sampling to balance the data and have decrease its effect.

The Random Forest helps decrease the variance in the data while gradient boosting classifiers to decrease the bias.

Model properly predicts around 55% of 6000 patients.



## Both!

#### Variables that are Most Explanatory of Top 6000

| Total Training Cost                                            | In Top 6000 Training                 |                                       | Number of<br>Agonists              | Factors<br>influencing I<br>Status |                               | Nervou:<br>Disease | ervous System<br>seases           |   |                                  |  |
|----------------------------------------------------------------|--------------------------------------|---------------------------------------|------------------------------------|------------------------------------|-------------------------------|--------------------|-----------------------------------|---|----------------------------------|--|
|                                                                | Number of OutPatient Facility Visits | Cost of Indepenent<br>Laboratory      | Mean Cost<br>Per Day<br>Diabetic   |                                    | Circula<br>System<br>Disease  | ı İ                | Ear Nose<br>and Mouth<br>Diseases |   | Age                              |  |
| Number of Claims                                               | Cost of Office Visits                | Nutritional and<br>Metabolic Diseases |                                    |                                    |                               |                    |                                   |   |                                  |  |
|                                                                |                                      |                                       | Number of Diabet<br>Drugs per Year | ic                                 |                               | lental<br>iseases  |                                   |   |                                  |  |
|                                                                |                                      | Respiratory System<br>Diseases        |                                    |                                    |                               |                    |                                   |   |                                  |  |
| Number of Non-diabetic Drugs per Year<br>Number of Drug Claims | Cost of Outpatient Facility Visits   |                                       | Skin Diseases                      |                                    |                               |                    |                                   |   |                                  |  |
|                                                                | Mean Cost Per Day Non-diabetic       |                                       |                                    |                                    | Number of<br>Physician Visits |                    | s                                 |   | r                                |  |
|                                                                |                                      | Number of Other Drugs                 | No Result Lab                      |                                    |                               |                    |                                   |   |                                  |  |
|                                                                |                                      |                                       |                                    |                                    | Number of<br>Biguanide Claims |                    |                                   |   |                                  |  |
|                                                                |                                      | Digestive System                      | Number of Lab                      |                                    |                               | 5                  | Eye Diseases                      |   | Number of<br>Muscle<br>Relaxants |  |
|                                                                |                                      | Diseases                              | Visits High La                     |                                    | Tests Eye Dise                |                    | Diseas                            | M |                                  |  |

## Communicating

- Visualizations
- Understanding your audience
- Recommendations

## Using Data to Better Understand Mental Health

**Jimmy Hickey** 



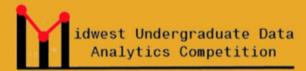
### Using Medical Data to Predict Future Patient Expenditures

Will Diedrick, Jimmy Hickey, Akif Khan, Kapil Khanal, Sean Wittenberg





### Brad Erickson, Uzma Ghazanfar, Brad Hennes, Jimmy Hickey TEAM 5



Winona State University | www.MUDAC.org

### Conclusion

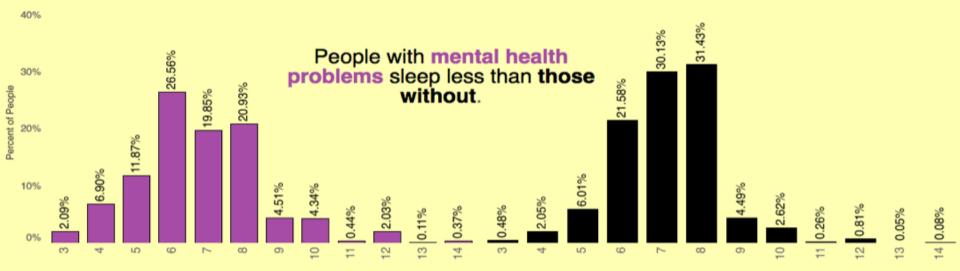
- The predictions from our model will help the employer understand the characteristics of diabetic employees that are likely to be high cost in the future.
- This insight will help allow the employer to identify these employees and focus on improving the health of these patients.
- Successfully identifying these employees will both reduce costs for the employer but also benefits the potentially high cost employees.

#### Improving one's mental health

These problems in society's treatment of those with mental health problems are not going to change overnight.

There are still many ways that one who feels stigmatized can help themself.





### Our Proposal for the City



#### Insight

Emergencies are highest in sector K around 7 P.M. during the late summer.

Gun related crimes tend to be clustered in certain areas.

#### **Recommendations**

The public should be made aware of the increased danger during these times and in these locations. A PSA campaign could disseminate this information effectively.

The Seattle Police Department should increase patrols in these hotspots during the most active times.



## Acknowledgements

- Will Diedrick
- Brad Erickson
- Uzma Ghanzanfar
- Brad Hennes
- Akif Khan
- Kapil Khanal
- Sean Wittenberg

# Questions?