Example Problems on Common Distributions

ST701 Homework 4 Common Distributions

Problems: 3.4, 3.12, 3.20, 3.25, 3.26 (a), 3.31, 3.38

3.4

A man with $n$ keys wants to open his door and tries the keys at random. Exactly one key will open the door. Find the mean number of trials if

(a)

unsuccessful keys are not eliminated from further selections.

This follows a geometric distribution with a probability of success of $1/n$. Thus,

\[E(Y) = \frac{ 1 }{ p } = \frac{ 1 }{ 1/n } = n.\]

(b)

unsuccessful keys are eliminated.

Notice how the probability of success at each stage.

\[\begin{align} 1) \ p & = \frac{ 1 }{ n }\\ 2) \ p & = \frac{ n-1 }{ n } \cdot \frac{ 1 }{ n-1 } = \frac{ 1 }{ n }\\ 3) \ p & = \frac{ n-2 }{ n-1 }\frac{ n-1 }{ n } \cdot \frac{ 1 }{ n-2 } = \frac{ 1 }{ n }\\ & \vdots \end{align}\]

Thus, the probability of succeeding on any trial is $\frac{ 1 }{ n }$.

\[E(Y) = \sum_{y=1}^{n} y \cdot \frac{ 1 }{ n } = \frac{ 1 }{ n } \cdot \frac{ n(n+1) }{ 2 } = \frac{ n+1 }{ 2 }\]

3.12

Suppose $X$ has a $binomial(n,p)$ distribution and let $Y$ have a $negative\ binomial(r,p)$ distribution. Show that $F_X(r-1) = 1 - F_Y(n-r)$.

Notice that $F_X(r-1) = P(X \leq r-1)$ is the probability of at most $r-1$ successes in $n$ trials. Also notice that $1-F_Y(n-r) = 1 - P(Y \leq n-r ) = P(Y > n-r)$ is the probability that there are no more than $n-r$ failures before the $r$th success. This is the same as there being $r-1$ sucesses in the first $n$ trials.

3.20

Let the random variable $X$ have the pdf

\[f(x) = \frac{ 2 }{ \sqrt{2 \pi} } e^{x^2/2},\ 0 < x < \infty\]

(a)

Find the mean and variance of $X$. (This distribution is sometimes called a folded normal.

\[\begin{align} E(X) & = \int_0^{\infty} x \cdot \frac{ 2 }{ \sqrt{2 \pi} } e^{x^2/2} \\ & = \int_0^{\infty} x \cdot \frac{ 2 }{ \sqrt{2 \pi} } e^{-u} \cdot \frac{ 1 }{ x } du \\ & = \frac{ 2 }{ \sqrt{2 \pi} } \int_0^{\infty} e^{-u} du \\ & = \frac{ 2 }{ \sqrt{2 \pi} } \\ \\ E(X^2) & = \int_0^{\infty} x^2 \cdot \frac{ 2 }{ \sqrt{2 \pi} } e^{x^2/2} \\ & = 1 \\ \\ Var(X) & = 1 - \Big( \frac{ 2 }{ \sqrt{2 \pi} } \Big)^2 \\ & = 1 - \frac{ 2 }{ \pi} \end{align}\]

(b)

If $X$ has the folded normal distribution, find the trasformation $g(X) = Y$ and values of $\alpha$ and $\beta$ so that $Y \sim gamma(\alpha, \beta)$.

Take $g(x) = x^2$, $\alpha = 1/2$, and $\beta = 2$.

\[\begin{align} f_Y(y) & = f_y(g^{-1}(y)) \cdot \Big| \frac{ d }{ dy } g^{-1}(y) \Big| \\ & = \frac{ 2 }{ \sqrt{2 \pi} } e^{-(\sqrt{y})^2/2} \cdot \Big| \frac{ 1 }{ 2 } \frac{ 1 }{ \sqrt{y} }\Big| \\ & = \frac{ 1 }{ \sqrt{2 \pi}} \cdot \frac{ 1 }{ \sqrt{y} } \cdot e^{-y/2} \\ & = \frac{ 1 }{ \Gamma(1/2) 2^{1/2} } y^{1/2 - 1} e^{-y/2} \\ & = \frac{ 1 }{ \Gamma(\alpha) \cdot \beta^{\alpha}} y^{\alpha - 1} e^{-y/\beta} \end{align}\]

3.25

Suppose the random variable $T$ is the length of life of an object (possible the lifetime of an electrical component or of a subject given a particular treatment). That hazard function $h_T(t)$ associated with the random variable $T$ is defined by

\[h_T(t) = \lim_{\delta \rightarrow 0} \frac{ P\Big( t \leq T < t + \delta | T \geq t \Big) }{ \delta }.\]

Thus, we can interpret $h_T(t)$ as the rate of change of the probability that the object survives a little past time $t$, givne that the object survives to time $t$. Show that if $T$ is a continuous random variable, then

\[h_T(t) = \frac{ f_T(t) }{ 1-F_T(t) } = \frac{ d }{ dt } \log(1 - F_T(t)).\]

Notice we can use the definition of the derivative.

\[\begin{align} h_T(t) & = \lim_{\delta \rightarrow 0} \frac{ P\Big( t \leq T < t + \delta | T \geq t \Big) }{ \delta } \\ & = \lim_{\delta \rightarrow 0} \frac{ P(T \leq t + \delta) - P(T \leq t)}{ (1 - P(T \leq t) \cdot \delta }\\ & = \lim_{\delta \rightarrow 0} \frac{F_T(t + \delta) = F_T(t) }{ (1 -F_T(t)) \cdot \delta }\\ & = \lim_{\delta \rightarrow 0} \frac{F_T(t + \delta) = F_T(t) }{ \delta } \cdot \frac{ 1 }{ 1-F_T(t) }\\ & = \frac{ f_T(t) }{ 1-F_T(t) } \end{align}\]

Also,

\[\begin{align} -\frac{ d }{ dt }(\log(1-F_T(t))) & = - \Big( \frac{ 1 }{ 1-F_T(t) } \Big) \cdot (0 - f_T(t)) \\ & = \frac{ f_T(t) }{ 1-F_T(t) }. \end{align}\]

3.26 (a)

Verify that the following pdfs have the indicated hazard functions (see exercise 3.25).

If $T \sim exponential(\beta)$, then $h_T(t) = \frac{ 1 }{\beta }$

\[\begin{align} h_T(t) & = \frac{ f_T(t) }{ 1-F_T(t) } \\ & = \frac{ 1/\beta \cdot e^{-t/\beta} }{ 1 - \int_{0}^{t} 1/\beta \cdot e^{-x/\beta} dx }\\ & - \frac{ 1/\beta \cdot e^{-t/\beta} }{ 1 - 1/\beta(\beta - \beta e^{-t/\beta}) }\\ & = \frac{ 1 }{ \beta } \end{align}\]

3.31

In this exercise we will prove Theorem 3.4.2.

(a)

Start from the equality

\[\int f(x | \theta) = h(x) c(\theta) \exp(\sum^{k}_{i=1} w_i(\theta) t_i(x)) dx = 1,\]

differentiate both sides, and then rearrange terms to establish (3.4.4). (The fact that $\frac{ d }{ dx } \log (g(x)) = gā€™(x)/g(c)$ will be helpful.)

\[\begin{align} 1 & = \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) dx\\ \frac{ \partial }{ \partial \theta_j } 1 & = \frac{ \partial }{ \partial \theta_j } \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) dx\\ 0 & = \int h(x)\cdot c'(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) + h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) \cdot \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big) dx \end{align}\] \[\begin{align} - \int h(x)\cdot c'(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) dx & = \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big) \cdot \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big) dx \\ - \frac{ c'(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) } \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) dx & = E\Big(\sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big)\\ -\frac{ d }{ d \theta_j } \log(c(\underset{\sim}{\theta})) & = E\Big(\sum_{i=1}^{k} \frac{ d w_i(\underset{\sim}{\theta}) }{ d\theta_j } t_i(x) \Big) \end{align}\]

(b)

Differentiate the above equality a second timel then rearrange to establish (3.4.5). (The fact that $\frac{ d^2 }{dx^2 } \log( g(x) ) = (gā€™ā€™ (x) / g(x)) - (gā€™(x) / g(x))^2$ will be helpful.)

\[\begin{align} 1 & = \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) dx\\ \frac{ \partial^2 }{ \partial \theta_j^2 } 1 & = \frac{ \partial^2 }{ \partial \theta_j^2 } \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) dx\\ 0 & = \int h(x)\cdot c''(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) + h(x)\cdot c'(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) \cdot \sum_{i=1}^{k} \Big(w_i'(\underset{\sim}{\theta}) t_i(x) \Big) + h(x)\cdot c'(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) \cdot \sum_{i=1}^{k} \Big(w_i'(\underset{\sim}{\theta}) t_i(x) \Big) + h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) \cdot \sum_{i=1}^{k} \Big(w_i'(\underset{\sim}{\theta}) t_i(x) \Big)^2 + h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) \cdot \sum_{i=1}^{k} \Big(w_i''(\underset{\sim}{\theta}) t_i(x) \Big) dx \\ 0 & = \frac{ c''(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) } \cdot \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) dx + 2\cdot \frac{ c'(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) } \cdot \int h(x)\cdot c(\underset{\sim}{\theta}) \cdot \exp \Big(\sum_{i=1}^{k} w_i(\underset{\sim}{\theta}) t_i(x) \Big) \cdot \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big) dx + E\Big[ \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big)^2 \Big] + E\Big[ \sum_{i=1}^{k} w_i''(\underset{\sim}{\theta}) t_i(x) \Big] \\ 0 & = \frac{ c''(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) } + 2 \cdot \frac{ c'(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) } \cdot E\Big[ \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big] + E\Big[ \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big)^2 \Big] + E\Big[ \sum_{i=1}^{k} w_i''(\underset{\sim}{\theta}) t_i(x) \Big] \\ 0 & = \frac{ \partial^2 }{ \partial \theta_j^2 } \cdot \log(c(\underset{\sim}{\theta})) + \Big(\frac{ c'(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) }\Big)^2 + 2 \cdot \frac{ c'(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) } \cdot E\Big[ \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big] + E\Big[ \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big)^2 \Big] + E\Big[ \sum_{i=1}^{k} w_i''(\underset{\sim}{\theta}) t_i(x) \Big] \end{align}\] \[\begin{align} -\frac{ \partial^2 }{ \partial \theta_j^2 } \cdot \log(c(\underset{\sim}{\theta})) - E\Big[ \sum_{i=1}^{k} w_i''(\underset{\sim}{\theta}) t_i(x) \Big] & = \Big(\frac{ c'(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) }\Big)^2 + 2 \cdot \frac{ c'(\underset{\sim}{\theta}) }{ c(\underset{\sim}{\theta}) } \cdot E\Big[ \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big] + E\Big[ \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big)^2 \Big] \\ & = E\Big[ \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big)^2 \Big] + \Big(-E\Big[\sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big]\Big)^2 + 2 \cdot - E\Big[\sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big] \cdot E\Big[\sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big] \\ & = E\Big[\Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big)^2 \Big] + E\Big[ \Big( \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big) \Big]^2 \\ -\frac{ \partial^2 }{ \partial \theta_j^2 } \cdot \log(c(\underset{\sim}{\theta})) - E\Big[ \sum_{i=1}^{k} w_i''(\underset{\sim}{\theta}) t_i(x) \Big] & = Var\Big[ \sum_{i=1}^{k} w_i'(\underset{\sim}{\theta}) t_i(x) \Big] \end{align}\]

(c)

In addition, use the natural parameter representation of the theorem (see 3.32 part (a)) to verify the mean and variance of general normal distribution.

Here is the normal PDF.

\[\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{1}{2 \sigma^2}(y-\mu)^2}\]

We will define the parameters as follows.

\[\begin{align} \eta_1 & = \frac{ 1 }{ \sigma^2 }\\ t_1 & = \frac{ -x^2 }{ 2 }\\ \eta_2 & = \frac{ \mu }{ \sigma^2 }\\ t_2 & = x \\ c & = \frac{ \sqrt{\eta_1} }{ \sqrt{2 \pi} } \cdot e^{\frac{ -\eta_2^2 }{ 2\eta_1 }} \end{align}\]

Then,

\[\begin{align} E(t_2(x)) & = E(X) \\ & = -\frac{ \partial }{ \partial \eta_2 } \log\Big( \frac{ \sqrt{\eta_1} }{ \sqrt{2 \pi} } \cdot e^{\frac{ -\eta_2^2 }{ 2\eta_1 }} \Big) \\ & = -\frac{ \partial }{ \partial \eta_2 } \Big[ \log\Big( \frac{ \sqrt{\eta_1} }{ \sqrt{2 \pi} }\Big) + \log \Big(e^{\frac{ -\eta_2^2 }{ 2\eta_1 }} \Big) \Big]\\ & = 0 + -\frac{ \partial }{ \partial \eta_2 } \Big( \frac{ -\eta_2^2 }{ 2\eta_1 }\Big)\\ & = - \Big( \frac{ -2 \eta_2 }{ 2 \eta_1 } \Big) \\ & = - \Big( \frac{ -\mu / \sigma^2 }{ 1 / \sigma^2 } \Big) \\ & = \mu \\ V(t_2(x)) & = V(x) \\ & = -\frac{ \partial }{ \partial \eta_2 } \Big( \frac{ -2 \eta_2 }{ 2 \eta_1 } \Big) \\ & = \frac{ 1 }{ \eta_1 }\\ & = \frac{ 1 }{ 1/ \sigma^2 } \\ & = \sigma^2 \end{align}\]

3.38

Let $Z$ be a random variable with pdf $f(z)$. Define $Z_\alpha$ to be a number that satisfies this relationship:

\[\alpha = P(Z > z_\alpha) = \int^{\infty}_{z_\alpha} f(z) dz.\]

Show that if $X$ is a random variable with pdf $(1/ \sigma) f((x - \mu)/ \sigma)$ and $x_\alpha = \sigma z_\alpha + \mu$, then $P(X > x_\alpha = \alpha$. (Thus if a table of $z_\alpha$ values were available, the values of $x_\alpha$ could be easily compute for any member of the location-scale family.)

\[P(Z > z_\alpha) = P\Big(\frac{ 1 }{ \sigma } (X - \mu) > \frac{ x_\alpha - \mu }{ \sigma }\Big) = P(X > x_\alpha)\]