Example Problems on Asymptotics

ST793 Homework 6 on Hypothesis Testing

6.2

1.

\[\begin{align} F(y; \sigma) & = \int_{0}^y \frac{ 2y }{ \sigma^2 } \exp(\frac{ -y^2 }{ \sigma^2 }) dy \\ & = \frac{ 2 }{ \sigma^2 } \int_{0}^y y \exp(\frac{ -y^2 }{ \sigma^2 }) dy \\ & = \frac{ 2 }{ \sigma^2 } \int_{0}^{\sqrt{ u }} y \exp(\frac{ -u }{ \sigma^2 }) \frac{ 1 }{2y }du & u = y^2\\ & = 1 - \exp(\frac{ -y^2 }{ \sigma^2 }) \end{align}\]

If $\sigma_1 \neq \sigma_2$ and $y=1$,

\[F(1; \sigma_1) = 1 - e^{-1/\sigma_1^2} \neq 1 - e^{-1/\sigma_2^2} = F(1; \sigma_2) \text{✅}\]

2.

Notice that the support of $F(y; \sigma)$ does not depend on $\sigma$. ✅

3.

Let’s find the log likelihood.

\[\ell(f(y;\sigma)) = \log(\frac{ 2y }{ \sigma^2 }) - \frac{ y^2 }{ \sigma^2 } = -2 \log(\sigma) - \frac{ y^2 }{ \sigma^2 }\]

Now we will take derivatives with respect to $\sigma$.

\[\begin{align} \ell ' & = \frac{ -2 }{ \sigma } + \frac{ 2 y^2 }{ \sigma^3 } \\ \ell '' & = \frac{ 2 }{ \sigma^2 } - \frac{ 6y^2 }{ \sigma^4 } \\ \ell ''' & = \frac{ -4 }{ \sigma^3 } + \frac{ 24 y^2 }{ \sigma^5 } \end{align}\]

All of these exist for $y > 0$. ✅

4.

We will start by defining $g(y)$.

\[\begin{align} | \frac{ -4 }{ \sigma_0^3 } + \frac{ 24 y^2 }{ \sigma_0^5 } | & = | -4 \sigma_0^{-3} + 24 y^2 \sigma_0^{-5}| \\ & \leq |-4 \sigma_0^{-3}| + |24 y^2 \sigma_0^{-5}| & \text{Triangle Inequality} \\ & = 4 \sigma_0^{-3} + 24 y^2 \sigma_0^{-5} & y, \sigma_0 >0 \\ & = g(y) \end{align}\]

Then,

\[\begin{align} \int_{0}^{\infty} g(y) dF(y;\sigma_0) & = \int_{0}^{\infty} g(y) f(y; \sigma_0) dy \\ & = (4 \sigma_0^{-3} + 24 y^2 \sigma_0^{-5})(\frac{ 2 y }{ \sigma_0 } \exp(\frac{ -y^2 }{ \sigma_0^2 })) dy \\ & = \frac{ 28 }{ \sigma^3 } < \infty \text{✅} \end{align}\]

5.

First we will check that the expectation of the score function is 0. Integrals can be found in this Mathematica script.

\[\begin{align} E( - \frac{ 2 }{ \sigma } + \frac{ 2 y^2 }{\sigma^3 }) & = -\frac{ 2}{ \sigma } + \frac{ 2 }{ \sigma^3 } \int_{0}^{\infty} \frac{ 2 y^3 }{ \sigma^2 } \exp(\frac{ -y^2 }{ \sigma^2 }) dy \\ & = \frac{ -2 }{ \sigma } + \frac{ 2 }{ \sigma^3 } \cdot \sigma^2 \\ & = 0 \text{✅} \end{align}\]

Now we will check that the two forms of the information are equivalent.

\[\begin{align} E\Big[ (\frac{ \partial \ell }{\partial \sigma})^2 \Big] & = \int_{0}^{\infty} \Big( \frac{ -2 }{ \sigma } + \frac{ 2 y^2 }{ \sigma^3 } \Big) \frac{ 2y }{ \sigma^2 } \exp(\frac{ -y^2 }{ \sigma^2 }) dy \\ & = \frac{ 4 }{ \sigma^2 } \\ \\ E\Big[\frac{ \partial^2 \ell }{\partial \sigma^2} \Big] & = \int_{0}^{\infty} \Big( \frac{ 2 }{ \sigma^2 } + \frac{ 6 y^2 }{ \sigma^4 } \Big) \frac{ 2y }{ \sigma^2 } \exp(\frac{ -y^2 }{ \sigma^2 }) dy \\ & = \frac{ 4 }{ \sigma^2 } \text{✅} \end{align}\]

6.3

Recall the definition of the derivative

\[\frac{ \partial }{\partial \theta} f(y; \theta) = \lim_{n \rightarrow \infty} \frac{ f(y; \theta + 1/n) - f(y;\theta) }{ 1/n } = \lim_{n\rightarrow \infty} f_n(y; \theta)\]

We know that $| \frac{ \partial f(y;\theta) }{\partial \theta} | = | f_n(y; \theta)| \leq g_1(y)$ for all $\theta$ in a neighborhood around $\theta_0$. Now we can directly apply the dominated convergence theorem.

\[\begin{align} \lim_{n\rightarrow \infty} \int f_n(y;\theta) dy & = \int f dy \\ & \text{or} \\ \frac{ \partial }{\partial \theta} \int f(y; \theta) dy & = \int \frac{ \partial }{\partial \theta} f(y;\theta) dy \end{align}\]

3.1

We will start by finding the MLE.

\[\begin{align} S(\theta) & = \frac{ \partial \ell }{\partial \theta} = b(y) - 2c\theta \stackrel{\text{set}}{=} 0 \\ \widehat \theta & = \frac{ b(y) }{ 2c } \\ \frac{ \partial ^2 \ell}{\partial \theta^2} & = -2 c \end{align}\]

So we have an MLE for $c > 0$. Now we can find our information.

\[I_T(\widehat \theta) = - E(\frac{ \partial S(\theta) }{\partial \theta}) = -E(-2c) = 2c\]

Now we can find our test statistics.

\[\begin{align} \text{Wald} \\ T_W & = \frac{ (\widehat \theta - \widehat \theta_0)^2 }{ I_T(\widehat \theta)^{-1} } \\ & = \frac{ (b(y) - \theta_0)^2 }{ 1/(2c) } \\ & = \frac{ b(y)^2 }{ 2c } - 2 b(y) \theta_0 + 2 c \theta_0^2 \\ \\ \text{Score} \\ T_S & = \frac{ S(\theta_0)^2 }{ I_T(\theta_0) } \\ & = \frac{ (b(y)-2c\theta_0)^2 }{ 2c } \\ & = \frac{ b(y)^2 }{ 2c } - \frac{ 2b(y)2c\theta_0 }{ 2c } + \frac{ (2c)^2 \theta_0}{ 2c } \\ & = \frac{ b(y)^2 }{ 2c } - 2 b(y) \theta_0 + 2 c \theta_0^2 \\ \\ \text{Likelihood Ratio} \\ T_{LR} & = -2(\ell(\theta_0) - \ell(\widehat \theta)) \\ & = -2(a(Y) - b(y) \theta_0 - c (\theta_0)^2 - a(y) - b(y) \widehat \theta + c(\widehat \theta)^2) \\ & = \frac{ b(y)^2 }{ 2c } - 2 b(y) \theta_0 + 2 c \theta_0^2 \end{align}\]

3.6

We will start by finding the log likelihood.

\[\begin{align} L(p_1, p_2 | Y_1, Y_2) & = p_1(1-p_1)^{y_1 - 1} p_2(1-p_2)^{y_2-1} \\ \ell(p_1, p_2 | Y_1, Y_2) & = \log(p_1) + (y_1 - 1) \log(1 - p_1) + \log(p_2) +(y_2 - 1) \log(1-p_2) \end{align}\]

Now we will find the score vector.

\[S(\theta) = \begin{bmatrix} \frac{ \partial \ell }{\partial p_1} \\ \frac{ \partial \ell }{\partial p_2} \end{bmatrix} = \begin{bmatrix} \frac{ 1 }{ p_1 } - \frac{ y_1 - 1 }{ 1 - p_1 } \\ \frac{ 1 }{ p_2 } - \frac{ y_2 - 1 }{ 1 - p_2 } \end{bmatrix} = \begin{bmatrix} \frac{ 1 - p_1 y_1 }{ p_1 (1-p_1) } \\ \frac{ 1 - p_2 y_2 }{ p_2 (1-p_2) } \end{bmatrix}\]

We need to find the second derivatives to find the information matrix.

\[\begin{align} \frac{ \partial ^2 \ell }{\partial p_i^2} & = \frac{ -1 }{ p_i^2 } - \frac{ y_i-1 }{ (1-p_i)^2 } \\ I_T(p_1, p_2)_{ii} & = -E(\frac{ 1 }{ p_i^2 } + \frac{ y_i-1 }{ (1-p_i)^2 }) \\ & = \frac{ 1 }{ p_i^2 } + \frac{ 1 }{ p_i(1-p_i) } \\ & = \frac{ 1 }{ p_i^2(1-p_i) } \\ \\ \frac{ \partial ^2 \ell }{\partial p_i p_j} & = 0 \end{align}\]

Thus,

\[I_T(p_1, p_2) = \begin{bmatrix} \frac{ 1 }{ p_1^2 (1-p_1) } & 0 \\ 0 & \frac{ 1 }{ p_2^2 (1-p_2) } \end{bmatrix}.\]

In order to find the score, we will need to find the restricted MLE under $H_0: p_1 = p_2 = p$.

\[S(p) = \frac{ 2 }{ p } - \frac{ y_1 + y_2 + 2 }{ (1-p) } \stackrel{\text{set}}{=} 0 \Rightarrow \widehat p = \frac{ 2 }{ Y_1 + Y_2 } = \widetilde p\]

Now we can find the score statistic.

\[\begin{align} T_S & = S(\widetilde p)^T I_T(\widetilde p)^{-1} S(\widetilde p) \\ & = \begin{bmatrix} \frac{ 1 - \widetilde p y_1 }{ \widetilde p (1-\widetilde p) } & \frac{ 1 - \widetilde p y_2 }{ \widetilde p (1-p_2) } \end{bmatrix} \begin{bmatrix} \widetilde p^2 (1-\widetilde p & 0 \\ 0 & \widetilde p^2 (1-\widetilde p) \end{bmatrix} \begin{bmatrix} \frac{ 1 - \widetilde p y_1 }{ \widetilde p (1-\widetilde p) } & \frac{ 1 - \widetilde p y_2 }{ \widetilde p (1-p_2) } \end{bmatrix} \\ & = \frac{ (1 - \widetilde p y_1)^2 + (1 - \widetilde p y_2)^2 }{ 1-\widetilde p } \\ & = \frac{ 1 }{ 1 - \widetilde p } (2 - 2 \widetilde p y_1 - 2 \widetilde p y_2 + (\widetilde p y_1)^2 + (\widetilde p y_2)^2 ) \\ & = \frac{ 1 }{ 1 - \widetilde p } (\widetilde p^2(y_1^2 + y_2^2) - 2 \widetilde p(y_1 + y_2) + 2 ) \\ & = \frac{ 1 }{ 1 - \widetilde p } ((\frac{ 2 }{ y_1 + y_2})^2(y_1^2 + y_2^2) - 2 (\frac{ 2 }{ y_1 + y_2})2(y_1 + y_2) + 2 ) \\ & = \frac{ 1 }{ 1 - \widetilde p } (\frac{ 4 }{ (y_1+y_2)^2 } (y_1^2+y_2^2) -4 + 2 ) \\ & = \frac{ 1 }{ 1 - \widetilde p } (\frac{ 4 }{ (y_1+y_2)^2 } (y_1^2+y_2^2) -\frac{ 2(y_1+y_2)^2 }{ (y_1+y_2)^2 } ) \\ & = \frac{ 1 }{ 1 - \widetilde p } \frac{ 4y_1^2 + y_2^2 - 2y_1^2 - 4y_1 y_2 - 2y_2^2 }{ (y_1+y_2)^2 } \\ & = \frac{ 1 }{ 1 - \widetilde p } \frac{ 2(y_1-y_2)^2 }{ (y_1+y_2)^2 } \\ & = \frac{ \widetilde p^2 }{ 2(1 - \widetilde p) } (Y_1 - Y_2)^2 \end{align}\]

3.9

\(\begin{align} L(\pmb \lambda | \pmb Y) & = \prod_{i=1}^{n} \frac{ e^{-\lambda_i} \lambda_i^{y_i} }{ y_i! } \\ \\ \ell(\pmb \lambda | \pmb Y) & = \sum_{i=1}^{n} - \lambda_i + \sum_{i=1}^{n} y_i \log(\lambda_i) + c \\ \\ S(\pmb \lambda)_i & = \frac{ \partial \ell }{\partial \lambda_i} \\ & = -1 + \frac{ y_i }{ \lambda_i } \\ \\ \frac{ \partial^2 \ell }{\partial \lambda_i^2 } & = \frac{ -y_i }{ \lambda_i^2 } \\ I_T(\lambda)_{ii} & = -E(\frac{ -y_i }{ \lambda_i^2 }) \\ & = \frac{ 1 }{ \lambda_i } \\ \frac{ \partial ^2 \ell }{\partial \lambda_i \lambda_j} & = 0 & i \neq j\\ I_T(\lambda) & = 0 \end{align}\)

Now we need to find the MLE under $H_0$.

\[\begin{align} S(\lambda) & = -n + \frac{ \sum_{i=1}^{n} y_i}{ \lambda } \stackrel{\text{set}}{=} 0 \\ \hat \lambda_0 & = \overline{ Y } \end{align}\]

Thus,

\[\begin{align} T_S & = S( \widehat \lambda_0)^T I_T(\widehat \lambda_0)^{-1} S( \widehat \lambda_0) \\ & = \begin{bmatrix} \frac{ Y_1 }{ \overline{ Y } } - 1 & \dots & \frac{ Y_n }{ \overline{ Y } } - 1 \end{bmatrix} \begin{bmatrix} \overline{ Y } & 0 \\ 0 & \overline{ Y } \end{bmatrix} \begin{bmatrix} \frac{ Y_1 }{ \overline{ Y } } - 1 \\ \vdots \\ \frac{ Y_n }{ \overline{ Y } } - 1 \end{bmatrix} \\ & = \sum_{i=1}^{n} \overline{ Y } (\frac{ Y_i }{\overline{ Y } } - 1) (\frac{ Y_i }{ \overline{ Y } }-1) \\ & = \sum_{i=1}^{n} \frac{ (Y_i - \overline{ Y })^2 }{ \overline{ Y } } \end{align}\]